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Abstract
In this paper, the approach of the Karhunen–Loève decomposition, known
also as the proper orthogonal modes (POMs), is taken to analyze phase
synchronization of various complex networks with different topologies, namely
the classic Kuramoto model, coupled chaotic maps with Gaussian delays and
a chain of diffusively coupled bistable oscillators. In the case of the Kuramoto
model, the POMs reveal the tendency and the level of synchronization with
the increase of the coupling strength for globally coupled networks and scale-
free networks, while periodic POMs are found in nearest-neighbor coupled
networks. Furthermore, for cluster networks on the Kuramoto model, the first
leading POMs based on different time intervals reveal that different sub-groups
of nodes synchronize gradually to different levels, eventually leading to the
complete phase synchronization. In the case of coupled chaotic maps, some
properties of phase synchronization change with the coupling strength value.
In the case of the chain of diffusively coupled bistable oscillators, several main
POMs not only determine the network phase synchronization but also provide
good reconstruction of the network responses.

PACS numbers: 05.45.Xt, 05.45.Tp, 87.19.In

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Synchronization is an interesting phenomenon, which plays a very important role in many
fields such as physics, chemistry, biology, engineering, meteorology, economics and sociology
[1–4]. On the other hand, complex networks have received a great deal of attention in the past
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Figure 1. K–L decomposition for globally coupled networks with coupling strength c = 1.
(I) The first and second POMs � i. (II) The largest 20 eigenvalues λi. (III) The amplitude or order
parameter (7). (IV) The first and second coefficients ai(tk).

decade. Synchronization of complex networks, consequently, was studied extensively in the
past from different approaches [5–10]. The present paper takes a new approach based on the
classic Karhunen–Loève (K–L) decomposition technique.

The K–L decomposition is a powerful tool for capturing the correlation between sequences
of data sets, extracting pertinent information with only a small number of modes [11].
This technique can be used for order reduction by projecting higher dimensional data into
a lower dimensional space, and can also be applied to feature extraction by revealing
relevant but perhaps unexpected unknown structures hidden in the data. The key idea of
this methodology is to reduce a large number of interdependent variables to a much smaller
number of uncorrelated variables while retaining as much as possible the essential variation
in the original variables [12]. The most striking property of the K–L decomposition is its
optimality in the sense that it minimizes the average squared distance between the original
signal and its reduced linear representation, which means that no other linear expansion
may lead to a better representation of the underlying system with the same number of
modes [13]. This method can be conveniently used to predict some basic and important
properties of responses of higher dimensional linear as well as nonlinear systems. The
mathematical formulation of the K–L decomposition was provided in, for example, [12],
where it was also shown how to apply the technique to discrete systems. The eigenvalues
(called proper orthogonal values), calculated from the autocorrelation matrix based on the data
information from the underlying system, indicate the energy captured by their corresponding
eigenvectors, called proper orthogonal modes (POMs), in which the few leading POMs are
particularly important because they capture most of the energy. The leading POMs can
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Figure 2. K–L decomposition for globally coupled networks with c = 2.5. All definitions are as
in figure 1.

also reveal the relationship among all system variables (network nodes) and be used to
reconstruct the approximate responses of the system. The K–L decomposition has been
used in different fields for numerous applications, such as highly nonlinear conduction
problems in structures made of periodic heterogeneous materials [11], model reduction
of general nonlinear dynamical systems [14], dynamical behavioral analysis of coupled
fiber laser oscillators with time delays [15] and continuous systems with infinite degrees
of freedom that undergo vibroimpacts [16]. Moreover, the acceleration techniques for
reduced-order models are based on the K–L decomposition [17], and some other applications
[18–22].

2. The Karhunen–Loève decomposition approach

To introduce the procedure of the K–L decomposition, suppose that the dynamical response
of a dynamical system is calculated numerically, with the response matrix given by

X =

⎡
⎢⎣

x1(t1) · · · xN(t1)

...
. . .

...

x1(tM) · · · xN(tM)

⎤
⎥⎦ , (1)
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Figure 3. K–L decomposition for nearest-neighbor coupled networks with c = 150 and k = 20.
All definitions are as in figure 1.

where N denotes the number of nodes in the system and M is the number of time steps of the
evolution of the dynamical system. The associated matrix of mean values is

XE = 1

M

⎡
⎢⎢⎣

∑M
i=1 x1(ti) · · · ∑M

i=1 xN(ti)

...
. . .

...∑M
i=1 x1(ti) · · · ∑M

i=1 xN(ti)

⎤
⎥⎥⎦ . (2)

Moreover, the deviation matrix is defined by Xd = X − XE , and the autocorrelation matrix is

R = 1

M
XT

d Xd, (3)

where R is symmetric and positive semi-definite. In addition, the associated eigenvectors or
the K–L modes � i and eigenvalues λi of the system are obtained as

R� = �� (4)

where � = [�1, . . . , �N ] ,� = diag(λ1, . . . , λN). Suppose also that the eigenvalues
are arranged as λ1 � λ2 � · · · � λN . The p-dominant eigenvalues satisfy(∑p

i=1 λi

)/(∑N
i=1 λi

)
� 0.999, where this value of p is useful for estimating the

dimensionality of the system in consideration. The p-dominant eigenvalues can also be
used to reconstruct the approximate responses x̃j (tk) of the system, which is written as an
expansion in terms of eigenvectors �i(j):

x̃j (tk) =
p∑

i=1

ai(tk)�i(j), (5)
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Figure 4. K–L decomposition for nearest-neighbor coupled networks with c = 280 and k = 20.
All definitions are as in figure 1.

where j is the index number of a node and the coefficient ai(tk) as a function of time is
calculated by ai(tk) = ∑N

j=1 xj (tk)�i(j), which weights the impact of the corresponding
mode [17].

3. Analyzing complex network synchronization

The basic procedure of the K–L decomposition presented in section 2 will be adopted in
the studies of network synchronization for three typical cases, as further discussed below,
respectively.

3.1. Network I. The Kuramoto model

The Kuramoto model consists of N coupled phase oscillators, θ i(t), i = 1, 2, . . . , N , described
by [23]:

θ̇i = ωi +
N∑

j=1

�ij (θj − θi), i = 1, . . . , N, (6)

where ωi denotes the frequencies and �ij represents the connectivity of the coupled system.
Here, the natural frequencies ωi satisfy a Gaussian distribution with zero mean and standard
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Figure 5. K–L decomposition for nearest-neighbor coupled networks with c = 900 and k = 20.
All definitions are as in figure 1.

deviation 1. The phase synchronization is usually checked via the order parameter defined by
[23]

r eiϕ = 1

N

N∑
j=1

eiθj , (7)

where r and ϕ are the amplitude and phase of the order parameter, respectively, and the level
of synchronization is measured by the amplitude r, in the sense that r = 1 means complete
synchronization in phase and r = 0 means completely unsynchronized.

Four kinds of network topologies are simulated based on the Kuramoto model.

(i) The first one is a globally coupled network with the same coupling strength c, i.e.

�ij (θj − θi) = c

N
sin(θj − θi). (8)

(ii) The second one is a nearest-neighbor coupled network, i.e. all the nodes are arranged as
in circle and every node is connected to k/2 (k is an even integer) nearest nodes at both
sides of it, as follows:

�ij (θj − θi) = c

N
e(i, j) sin(θj − θi), (9)

where e(i, j) = e(j, i) = 1 if there is a connection between node i and node j , but it is
zero otherwise.
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Figure 6. The leading POMs for scale-free networks with different coupling strengths.

(iii) The third one is a scale-free network in the same form as (9). Initially, ten nodes are
randomly coupled; then, at each time step, a node is being added into the network and
it brings in three new links to preferentially connect to three randomly selected existing
nodes until the total number of nodes is 500; then the process is stopped. Here, the
preferential probability that the new node is connected to the existing node j in the
network is kj

/∑
l kl , where kj denotes the degree of node j [24].

(iv) The fourth one is a cluster network in the same form as (9). In this network, a total of 400
nodes are equally divided into four sub-groups. Each sub-group of 100 nodes is a small
globally coupled sub-network. Then, eight nodes from sub-group 1 are randomly selected
and completely coupled to randomly selected eight nodes in sub-group 2; meanwhile,
eight nodes from sub-group 3 are randomly selected and completely coupled to randomly
selected eight nodes in sub-group 4. Finally, two nodes in each sub-group are randomly
selected and then coupled completely. A relation between the spectral information of
the Laplacian matrix and the hierarchical process of the emergence of communities at
different time scales was reported in [25]. In this paper, this problem is further studied,
with a more detailed analysis and discussions, by using the proposed procedures of the
K–L decomposition.

The POMs � i, eigenvalues λi and coefficients ai for different networks are calculated, as
shown in figures 1–7, where N = 500 was used for globally coupled, nearest-neighbor coupled
and scale-free networks, while N = 400 was used for cluster networks.

It can be seen from figure 1 that, with a small coupling strength for the globally coupled
network, the first and second POMs are irregular and the order parameter r is very close
to zero, which both demonstrate that the oscillators cannot synchronize with each other in
phase. As the coupling strength increases, more and more oscillators get into the phase of
synchronization.

It can be observed from figure 2 that the first leading POM and the values of the order
parameter r both indicate that most nodes become synchronized. Furthermore, the first leading
POM clearly shows that the nodes are not synchronizing, but this phenomenon is not reflected
by the value of the order parameter r.

It can be seen from figure 3 that with a small coupling strength for the nearest-neighbor
coupled network, the first and second POMs are periodic and the order parameter r is far from 1,
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Figure 7. The leading POMs for cluster networks on different time intervals. The coupling
strength c = 12.

Figure 8. Bifurcation diagram of the network response versus the coupling strength c:
N = 500, τ0 = 3, d = 2.

which means that the system is not synchronized. It can also be seen from figure 4 that the
order parameter r decreases as the coupling strength increases. This is because the second
coefficient a2(tk) in figure 4(IV) and the associated periodic second mode in figure 4(I) are
dominant and the periodic oscillations of all nodes significantly reduce the order parameter
and the synchronizability of the system. With a further increase in the coupling strength, the
order parameter r becomes gradually closer to 1 and the periodic POMs disappear eventually,
as shown in figure 5. To the best of the authors’ knowledge, the phenomenon of periodic
oscillations among all nodes in a nearest-neighbor coupled network is observed and reported
for the first time here by using the K–L decomposition method, and this phenomenon cannot
be explained by using the order parameter r alone.

It can also be seen from figures 1–5 that the leading (normalized) eigenvalues and the
corresponding coefficients are all much larger than the others in most cases, which verifies
once again that the leading K–L modes are indeed the dominant modes.
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(I) (II ) (III)

Figure 9. The K–L decomposition of the network with coupling strength c = 0.1. (I) The first
and second POM; (II) The largest 20 eigenvalues; (III) The first and second coefficients ai(tk) of
the POMs.

(I) (II ) (III)

Figure 10. The K–L decomposition of the network with coupling strength c = 0.35. All definitions
are as in figure 9.

The POMs with different coupling strengths in scale-free networks are presented in
figure 6. It can be observed that the first-mode curve becomes flat as the coupling strength
becomes larger, demonstrating that the system gets into the phase of synchronization. The
percentages of the corresponding eigenvalues λ1 of these first POMs are all larger than 99.9%,
i.e. λ1

/(∑500
i=1 λi

)
> 0.999.

The first POMs obtained based on the data over different time intervals of the cluster
networks are plotted in figure 7. The percentages of the corresponding eigenvalues λ1 of these
first POMs, over five time intervals, are 95.02%, 99.51%, 99.87%, 99.981% and 99.9996%,
respectively. It can be seen from figure 7 that the four sub-groups get into the phase of
synchronization individually on the time interval [500, 1000]; then, the combined first and
second sub-groups and the combined third and fourth sub-groups both get into the phase
of synchronization individually on the time interval [1000, 1500]; finally, the whole system
achieves synchronization on the time interval [2000, 2500]. These demonstrate that the leading
POMs on different time intervals can indeed reveal the detailed processes of synchronization
of the networks. It should be pointed out that even though a similar phenomenon has been
reported in [25] in a different model, the detailed process evolving to synchronization of the
system can be observed more directly and more clearly by using the K–L decomposition
method.
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Figure 11. K–L decomposition of the network with periodic boundary condition: N = 300,

M = 50, k = 125,K = 15, D = 0.1,m = 0.25. (I) Original responses of the system (11).
(II) The first and second POMs. (III) The largest 20 eigenvalues. (IV) The first and second
coefficients ai(tk) of POMs. (V) Reconstructed responses using the first and second POMs.

3.2. Network II. Coupled chaotic maps with Gaussian delays

Consider N coupled chaotic maps with time delays, described by [26]

xi(t + 1) = (1 − c)f [xi(t)] +

⎧⎨
⎩c

N∑
j=1

e(i, j)f [xj (t − τij )]

⎫⎬
⎭

/
bi, (10)

where t and i are discrete indices of time and space, respectively, f (x) = mx(1 − x) is the
chaotic logistic map, e(i, j ) is the connectivity matrix of the network as defined in network I
above, c is the coupling strength, τ ij is the time delay in the interaction between node i and
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(V )

Figure 12. K–L decomposition of the network with fixed boundary condition. All definitions are
as in figure 11.

node j satisfying τij = τ0 + Near(dξ) [26], where d is a real constant, ξ is a Gaussian random
variable with zero mean and standard deviation 1, and Near(dξ ) means the integer nearest to
the value of dξ (the distribution of delays has to be truncated to avoid becoming negative), and
bi = ∑

j e(i, j) is the degree of the node i, i, j = 1, 2, . . . , N . The network has a small-word
topology, generated from the nearest-neighbor network with k = 6 and p = 0.3 [24].

It can be seen from figure 9 that the first and second POMs are irregular and the largest 20
eigenvalues have the same order in magnitude when the coupling strength is small. It implies
that the first POM is not the dominant mode in the present case and the responses of the system
are random.
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It can be seen from figure 10 that the first POM has two possible responses from the
network and the largest eigenvalue is the dominant one. Clearly, the behavior of the K–L
decomposition agrees well with the network bifurcation behavior shown in figure 8.

3.3. Network III. A chain of oscillators

A chain of overdamped oscillators with diffusive coupling (constant strength K > 0) and a
bistable potential V (y) = −my2/2 + y4/4, as studied in [27], is described by

ẏn = K�yn − V ′(yn) +
√

2Dξn(t) + S(Mk)
n (t), n = 1, . . . , N, (11)

where �yi = yi+1 − 2yi + yi−1, V ′(y) denotes the derivation of y, ξ n(t) is a sequence of
independent Gaussian white noise with zero mean and intensity D, S(Mk)

n (t) = {s(t) if
n ∈ M , or 0 otherwise}, s(t) = A cos(ωt) with A = 0.025 and ω = 5π · 105, and
Mk = {k + 1, k + 2, . . . , k + M}, 0 � M � N . Two different boundary conditions are
considered:

(1) periodic boundary condition: �y1 = y2 − 2y1 + yN , �yN = y1 − 2yN + yN−1;
(2) fixed boundary condition: �y1 = y2 − 2y1, �yN = yN−1 − 2yN .

In numerical simulations, the time step is 0.01 and the data of 40 million stationary time
series are used for computing the K–L decomposition. The responses of the network and the
results of the K–L decomposition for the two boundary conditions are shown in figures 11 and
12, respectively.

It can be seen from figures 11 and 12 that the phenomenon of spatiotemporal stochastic
resonance is observed for the network with both boundary conditions. The first POM of the
network is the dominant mode and the largest eigenvalue is the key eigenvalue in using the
K–L decomposition for this investigation. It can also be seen from figures 11(V) and 12(V)
that the reconstruction by using the first and second POMs as shown in (5) represents the
basic behavior of the responses of the network, for both the two cases with different boundary
conditions.

4. Conclusions

In this paper, the K–L decomposition has been applied to study the synchronization of
dynamical responses of various complex networks. The methodology has been used to predict
the behavior of the Kuramoto model, coupled chaotic maps and a chain of oscillators with
bistable potential, in different structural topologies. It is found from this study that the first
leading POM not only is the key mode of the responses of the network in most cases, but also
reveals the detailed processes of synchronization of the network over different time intervals.
The phenomenon of periodic oscillations among all nodes in the nearest-neighbor coupled
network is observed and reported for the first time in this paper. The first and second POMs
are dominant in many cases, which were used to reconstruct a good approximate response
of the chain of oscillators with a bistable potential. All the results have demonstrated that
the K–L decomposition is indeed a powerful tool for investigating the dynamical behavior of
various complex networks and systems.
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